Efficient Use of Semidefinite Programming for Selection of Rotamers in Protein Conformations

نویسندگان

  • Forbes J. Burkowski
  • Yuen-Lam Cheung
  • Henry Wolkowicz
چکیده

Determination of a protein’s structure can facilitate an understanding of how the structure changes when that protein combines with other proteins or smaller molecules. In this paper we study a semidefinite programming (SDP) relaxation of the (NP-hard) side chain positioning problem (SCP) presented in Chazelle et al. [4]. We show that the Slater constraint qualification (SCQ) fails for the SDP relaxation. We then show the advantages of using facial reduction to regularize the problem. In fact, after applying facial reduction, we have a smaller problem that is more stable both in theory and in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles

One of the main challenges for protein redesign is the efficient evaluation of a combinatorial number of candidate structures. The modeling of protein flexibility, typically by using a rotamer library of commonly-observed low-energy side-chain conformations, further increases the complexity of the redesign problem. A dominant algorithm for protein redesign is dead-end elimination (DEE), which p...

متن کامل

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

A Fuzzy Goal Programming Model for Efficient Portfolio Selection.

This paper considers a multi-objective portfolio selection problem imposed by gaining of portfolio, divided yield and risk control in an ambiguous investment environment, in which the return and risk are characterized by probabilistic numbers. Based on the theory of possibility, a new multi-objective portfolio optimization model with gaining of portfolio, divided yield and risk control is propo...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014